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The  objects o f  investigation are nonl inear  med ia  possess ing  a thermal  memory .  Vibrat ional-relaxat ional  

thermal  regimes  f o r  one -d imens iona l  f i e lds  with three types o f  spatial  s y m m e t r y  are studied.  E x a m p l e s  o f  

bi furcation processes  for  one -d imens iona l  a n d  sel f -s imi lar  two-d imens iona l  variants are given. 

Analysis of the formation of relaxation structures of thermal fields occupies an important place in the 
problem of investigation of transfer processes in locally nonequilibrium systems. The most significant results of the 
studies in this area are presented in reviews [ 1-4 ]. 

As is known (see detailed bibliography in [1-4 ], the Maxwell relaxational model of heat transfer in a 
stationary medium is composed of a heat-flux equation and an energy equation: 

= OT q +  dq - 2 g r a d T  c ~ - + d i v q = q v  
Ot ' " 

(1) 

In a one=dimensional case with a plane, cylindrical, and spherical symmetries this system is written in the form 

0 q = _ 2  d T  OT dq vq 
q + Y dt -~x ' c - ~  + ~ x  + - -  = v = 0 , 1 , 2 .  

(2) 

On the basis of model (2) studies have been made of boundary-layer transitions [5 ], thermal shock waves 
[2, 6-8 ], phase interfaces [9 ], and dynamic thermal hysteresis [10]. 

The objectives of the present work are 1) determination of the conditions for the onset of oscillations of 
temperature and of heat flux in nonlinear media in the presence of volume sources (sinks) of energy; and 2) study 
of bifurcation phenomena in one-dimensional and self-similar two-dimensional thermal fields. 

1. VibrationaI-Relaxational Processes. We will take the following relations: 

2 20T nl n2 = , C = c o T  , 7 ' = c o n s t ,  f l = ( n  l - n 2 ) / ( 1  + n 2 ) ,  

qv = Qo T l + n 2 ,  r = exp ( -  k t ) ,  ~,kn = 1, m 2 = 1 + n 2 > 0 ,  

H m  2 +  1 = n ,  Qo = - H k c o ,  no = H (n 2 -  nl) + 2 ,  

T =  r i l e ,  q = k~nv , m 2 U  = c o o  m2 , aoc 0 = ~t O ( m 2 / c O )  ~ . 

Then, heat-transfer equations (2) take the form 

(3) 

Ur = vx + V-~Vx ' k2yvr = [ r - n ~  WdU] x ' W =  ao Ufl , (4) 

which is similar to the gas dynamic equations for nonadiabatic flow in Lagrange coordinates 111 l. 
To make the equations dimensionless, we use scales that admit invariance of the dimensional and 

dimensionless forms of representation. For example, gb = 2tbTb/Xb, 2tb = CbX2/tb, etc. 
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Now, we construct a solution having the same structure as for a gas flow with a linear velocity profile [12 ]. 
According to the first equation in system (4), we have: xVU = g'x, xVv ffi q'r. We take xVv = g ,L(r ) ,  then v~ - 

v(L  + ~ L - i ) .  From this we obtain 

v =  V (x) B (z') , B ( r )  = exp [ f ( L + L L - I ) d r ] ,  B=l~(r), 

= [ i , ( x )  + c Or) ,  B = C L ,  = x V v /  L . U 

Substituting these relations into the second equation of system (4) and separating the variables, we obtain two 
ordinary differential equations for the functions C(O and V(x): 

r nO d2C = pC 1 +fl ~ - -  const  ~ 0 (5) 
d.r2 ' , 

[= [ + __ + . (6) P V = k_~ Y dV 
dx dx 

We consider some of the properties of the solutions of Eqs. (5) and (6). We note that Eq. (5) represents 
t 

the Emden-Fowler  equation [13 ]; mathematically it has been studied for particular values of fl and no that have 
no interesting applications to heat transfer. For Eq. (5) we take the solution 

C --- C O = Coo exp ( H  1 o ,  

C'8oo = H l (k + Hl) /(k2p) ,  H l = Hkm 2, k > 0 .  (7) 

Formula (7) gives a time-independent temperature distribution over x. Then, we linearize Eq. (5) near (7): C - 
Co + Cl,  I C11 << 1 and return to the argument t: 

d2Cl dCl 2 2 
+ k + k . C  1 = O ,  k ,  = - H ! (k + HI) (1 +/3) > 0 .  (8) 

dt 2 dt 

Written in the above  form,  Eq. (8) is an  equat ion  of d a m p e d  osci l lat ions of a point.  Ana lys i s  shows tha t  the re  is a 

per iodic  solution: 

,=, = s,n l 
if the p a r a m e t e r  H,  cha rac te r i z ing  the  vo lume source ,  is equal to 

H = {-- 1 + [1 - c~  - !  (1 + f l ) - 1 1 1 / 2 }  ( 2 m 2 ) - I  

and ,  moreover ,  if the following conditions are  satisfied: 1) the volumetr ic  heat  s ink,  Q0 < 0 , /~  > 0, 6 E (0, 1), 

n I < - 1 ,  n 2 > - 1 ,  i.e., t3 + 1 < 0; v = 1, 2; 2) the volumetr ic  l iberat ion of heat ,  Q0 > 0, k~ < 0, <5 E ( 1 / [ 1  + t31, 

1), - 1  < n2 < h i ,  i .e . , /3 + 1 > 0; v = 0. I f 6  _> 1, the t e m p e r a t u r e s  var ia t ion with t ime is aper iodic .  

T h e  solut ion of Eq. (6) at  v ffi 0 is r e p r e s e n t e d  in pa r ame t r i c  form by using the q u a d r a t u r e  

x ( y ) = Y f p - l / 2 d y ,  p = 2 K + m 2 ,  mo=l~k 1+~. b = f l  + 2  o aon t3 + 1 ' /3 = 2 n 3 '  

m 0 (2 + n3) K = (1 + n3) [(m0Y + m l )  a - rn~ I ,  2K (Yl) + rn2 = 0 ,  moY t = - m I , 
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Fig. 1. Period and decrement of oscillations in time (plane case) (a) and over 

the logarithmic radial coordinate (cylindrical and spherical symmetries) (b). 

V(x) =p(y), d V / d x =  ( m a y +  ml) l / (f l+l)  x ~  [0, = )  y E  [0, yl)  

Here, the following conditions are satisfied: x -* *% u -~ 0, q -* 0, when fl + 1 > 0. And this means that in the 

plane case the oscillations of the temperature and heat flux over time occur with volumetric liberation of heat,  

whereas in the case of heat absorption at v = 0, there are no oscillations in t. Figure la  shows dependences  of the 

source parameter Qo~,/co of the dimensionless oscillation period 0 /2w?  and of the logarithmic decrement d on the 

parameter for three values of ft. We also indicate that the dependence of the oscillation period on fl > 0 is monotone 

increasing; for example, when n2 = 1, fl E (0, 2 ], we have 0 / 2 ~ y  E (4.8),  0(fl) < 0. 
We take z = In x, V = xMD(z),  and M = 1 + (2 / f l )  < 0 for cylindrical and spherical symmetries and 

represent Eq. (6) as: 

dD 
d z =  G -  ( M + v )  D ,  (9) 

_ - a0n dG I~ G D -  ~ ( M  - I) G , a I - 
dz a I k 

The particular solution 

D O = G o / ( M + v ) ,  4 = p / [ a l ( M + v ) ( M - l ) l > O ,  G 0 > 0 ,  M < 0  (10) 

corresponds to an exponential  temperature distribution over the radial coordinate: T - x  2/(ni-n2). We linearize 

system (9) in the vicinity of (10), D--  D o + Di, G =  GO + G!, ID!l  << l, IG!t << l and obtain the second-order  

differential equation 

d2Dl dD l - 1 
~ + M !  + 2 ( M + v )  D I = 0 ,  M! = M + v + 2 ( l  + f l ) f l  

dz 2 dz 

which has a solution periodic in z if 1) v = 1, - 1  < M < 0 and 2) v -- 2, - 3 / 2  < M < 0; 
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[{ __,,12] 
D l = D l 0 e x p ( - M l Z / 2  ) s i n  z 2 ( M + v ) -  (M~l/4)l +~01 , z _ > 0 .  

From this we conclude that in the cylindrical case with fl E ( - 2 ,  - 1) and a volumetric heat sink, the temperature  

field oscillates both in time and over the coordinate z = In x. In the spherical case with qv < 0 at fl E ( -  1, - 0 . 8 )  

the solution has a vibrational character  over z, and there are no oscillations in t; with fl • ( -2 ,  - 1 )  and qv < 0 
the situation is similar to the cylindrical case: along with oscillations in t there are oscillations over z. The  depend-  

ences of the period 0(~) and of the logarithmic decrement d(z) on the medium nonlinearity parameter  fl are shown 

in Fig. lb; here  we must note that in the spherical case the function 0(z)(fl) is nonmonotonic. When v = 1, 2, the 

properties of the oscillations in t are as follows: the period 0 / 2 ~ y  and the decrement d are monotone increasing 

functions of the parameter  Qoy/co < 0; a t f l  E ( - 2 ,  - 1  ), we have 0/Z,-W E (10, 20), 0(fl) > 0, and ~(fl) > 0. 

For plane symmetry  v = 0 there are no oscillations over the coordinate. For cylindrical and spherical 

symmetries,  oscillations of the thermal field are realized with volumetric absorption of heat,  but they are absent,  

when qv > 0. The  period of oscillations over z is independent  of the source Q0; it is determined only by the value 

of ft. For all of the types of symmetry,  the period 0 decreases rapidly with an increase in the source 1(201, i.e., an 

increase in the intensity of the energy source increases the frequency of oscillations. 

In an experimental  investigation of the thermophysical properties of high-temperature superconductors the 

effect of thermal relaxation on the result of measurements was noted [14 ]. The  vibrational-relaxational properties 

of the thermal field obtained in the present work are directly related to this problem. In [14 ], a plane specimen of 

high-temperature superconducting yt t r ium-based ceramic was investigated; continuous heating was provided by a 

constant-power internal heat source. This fact is in agreement  with the result obtained in the present work that in 

the plane case oscillations in time occur precisely in the case of a volumetric heat supply. Thus ,  we have conditions 

u n d e r  which  it is poss ib le  to e s t ima t e  the  per iod  of o r ig ina t i ng  osc i l la t ions .  T h e  n e c e s s a r y  condi t ion  

- 1  < n2 < nl is satisfied, in particular, for T, K E [5, 10 ]. For example, in the vicinity of 8 K we have n2 " 0 

and nt ~- 1; when 6 = 0.75, we obtain 0 / y  -~ 17.2, and when ~ -- 0.9, we obtain 0 / y  - 31.4, where ~ - 5 0 0 - 7 0 0  
Set:. 

2. Inhomogeneous Energy Source and Bifurcat ion.  In the above -men t ioned  ex p e r im en t s  [14] ,  an  

unambiguous  i n t e r p r e t a t i o n  of the  resu l t s  o b t a in ed  is h a m p e r e d  by the m ac ro s t ru c tu r a l  ( technologica l )  

inhomogene i ty  of the material .  We ana lyze  the case of an inhomogeneous energy  source of the form qv " 

kvxT~B(t). For the heat t ransfer  equations we will construct a solution similar in structure to the previous one. We 

use the notation of Item 1 for those cases in which it will not cause confusion. We represent  the solution in the 
form 

q = v (x)  B ( t ) ,  

and after separation of variables we have 

U (x2/flkv dVdx V-XVX) C (t) , B (t) = C (t) 

d2C dC 
7 - - + - - + I  ~ C l + : = O ,  ~ ~ 0 ,  

dt 2 dt 
(ll) 

= 

Equation (11) is similar to Eq. (5). We consider Eq. (12). Taking V = xMD(z) and z = In x, we obtain: 

__ dG !L -: 2/3- dD =kv- D(M.v)-G - DG - (M- I)G, M= I + . 
dz ' dz a 0 

The equilibrium state of this dynamic system is as follows: 

(12) 
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Fig. 2. "Medium-source"  system: the boundary of saddles. 

Moreover, we have 

0 a 0 ( M + v ) ( M -  I) G l + fl D 0 = ( k  v - G o ) ( M + v ) - l ,  kv =Go+-~ 0 3 )  

a = ( 4 / / / )  + v + 3 ,  

A = [1 + O0(k - 

Relation (13) allows us to construct a bifurcation diagram [15], i.e., a curve relating the source parameter ~ to 

the  nonlinearity parameter ft. In the plane kv, Go these curves are convex downwards, and at fl ~ [ - 2 ,  - 1 ] and 

fl E (--1, 0) they lie in the first and fourth quadrants; in each of these variants the smaller Ifll, the higher the  

diagram is located along the kv-axis. The bifurcation relationship between ~ and Go can be found from the condition 

of t a n g e n c y  of  kv = const to the line (13) at the point of the  min imum:  

G~O=-/a [ao(M+v)(M- I ) (1  + f l ) ]  -1 > 0 ,  / ~ = f l G o ( I  + f l ) - l .  (14) 

This value of k~ determines the boundary of the saddles A = 0. Figure 2 illustrates the form of the curves A - 0 

for different types of spatial symmetry; here it should be taken into account that 

1) v = 0 ,  / x < 0 ,  f l E ( - l , 0 ) ;  / ~ > 0 ,  f l E [ - 2 , - l ) ;  

2) v = l ,  / ~ < 0 ,  f i E ( - 1 , 0 ) ;  f l ~ [ - 2 , - l ) ;  

3) v = 2 ,  p < 0 ,  f i E [ - 2 , - 1 ) .  

This means that there are singular saddle-type points, a node or an unstable node near the line A -= 0. In the 
vicinity of two singular points (node O1 and saddle 02) there are successive phases: on at tainment of the bifurcation 

value (14), points O l and 02 merge, and a complex singular saddle-node (a stable or unstable node) point is 
obtained; then the singular points disappear. 

Consideration of the stability limit of nodes and focuses cr = 0 gives fl0 = -4/(v + 3). In the cylindrical 

case flo = - l ,  and there are no nonrough equilibrium states. In the plane case, the sign of A is determined by the 
sign of the expression 4/~Go 4'3 - ao, when A > 0, the singular point is a center, the solution is periodic over z, and 

the trajectories of the dynamic system are closed curves. Near cy = 0 with A > 0 either a stable or unstable focus 

may exist, whereas with A < 0 there is a saddle. The spherical variant gives flo = -4/5, the sign of A is determined 
by the sign of the expression 4pG~ s - ao; the behavior of the integral curves is similar to the plane case. 

3. Plane Circular Region. We will operate with Eqs. (l)  in the polar coordinates r and 7,. Let us assume 
that for the quantities 2, c, qv dependences (3) are satisfied. In this case, the heat- transfer  equations have a 
particular solution: 

= - -  ~o), 0 _ < T  <_ 2 ~ ,  0 <  r < r < - - r  < oo,  f > _ O ,  
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= karl+2//~ , = Ar l + 2 / •  kBrN~ n ql + kBrNrn q2 - , 

ffl+l = F ,  A ( k  O -  l ) = ~ a l F  , N = a  + 1 + (2a + 2 - a n o ) f 1 - 1 ,  

~l = ko~fd , - (2+~).~Ad~P+CI, B=(I + N)~f Bd, + C2, 
0 0 0 

k O= (n O -  2 ) / f l ,  a I = a o / Y k  2. (16) 

Here a ,  Cl,  C2 are arbitrary constants, B(~o) is an arbitrary periodic function with period 27t/l, l = 1, 2, 3 . . . .  
In the calculations we use formulas that follow from Eqs. (3) and (16): 

k o = Q l  1 + , k = Q l  +-~,  n =  1 - k o ,  

2 
Ql = Q o ( 1  + n z ) / C o ,  x = k o (k o -  l ) / a  I = - Q1/ao > O. 

The function F(~o) is determined by the differential equation 

d2F 4 (ff + 1) 2 
+ F =  (13 + I) x 2 F  l/(fl+l) (17) 

Solution (15)-(17) has a physical meaning at any nonzero finite r: it describes the stat ionary temperature and 

relaxing heat flux in a plane circular region. If B(~o) --- 0, then we have a stationary thermal field. 
The exact solution 

(IS) 
e0='0 ' = 40~+ l) 

characterizes a one-dimensional temperature field with cylindrical symmetry.  Linearization of Eq. (17) near the 
value (18) gives: 

a 2(AF) + 4 ( i f +  1) ( A F ) = 0 ,  
d~p 2 fl 

(19) 

F= F 0+ AF, I AFI << I, 

This equation has a solution periodic in ~ if the parameter of the medium nonlinearity fl satisfies the condition 

2 (20) 4(fl~+ 1) = m  , m = 4 , 6 , 8  . . . .  

The selection of the even values of m is dictated by the structure of the solutions obtained below. It should be borne 

in mind that the numerical parameter fo characterizes the temperature of the material, while the parameter fl 

characterizes its nonlinear properties in the corresponding temperature range. Consequently,  the bifurcation value 
for the source parameter QI is determined by the expression 

2 4/0/t (21) QI.  = - ao x2,  x.  = (fl + l ) / f l  2, 

with fl -- 4 / ( m  2 - 4) here and below. If we use the Ostrogradskii criterion as a dimensionless characteristic of the 
energy source 
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it turns out that in the class of media (3) its bifurcation value is negative and is dependent only on the nonlinear 
properties of the medium: 

Os. = - 4 ~ + 1)2//32 . 

We note that mathematically the character of the bifurcation presented here is in its basic features similar 

to that observed in the hydrodynamic problem of the axisymmetric flow of a viscous incompressible fluid caused 

by a point source [16]. 
According to Eqs. (19) and (20), the eigenfunction is equal to AF = h sin m~o. Following the method of 

[17 ], we construct the solution of Eq. (17) in the form of expansions in the small amplitude h: 

2 2 
F =  FO. + h F  1 + h2F2 + ' ' '  , ( -  Q l /aO)  -- x = x .  + ]uc I + h 2 2  + . . .  

For the coefficients of the first and second approximations we obtain: 

~q = 0 ,  x 2 = 5 / [ 6~ (~ + 1)/0#+21, 

F l =s i nm~o ,  F2= (2sin2m~o-2 [-) /(m2,F0,). 
Let us write Eq. (17) in another form: 

1/C8+1) / ~  2D ~/~+1) ~C2~2/(~ + 1). + y = •  , P = y D ,  , = 
a,/, z 2 I) 

From here we find the first integral 

2 
(d~_) +y2 ( / 6 + 1 ) ( , 8 + 2 ) / ( , 8 + ! )  

dr: = 0 +2) y + c ,  

which illustrates the location of the integral curves on the phase plane y, j:. The closed lines represent solutions 

periodic in ~,. The equation of the separatrix (C = 0) is 

Ys=Yl cos ~o- , Yl = I ~ +  1) /0~+ +l) / f l  

The branches of the separatrix converge at the points (0, 0) and (Yl, 0). In the case of small oscillations near the 

rest point (y., 0) we have 

2 (~ + t) y.(fl+2)/(fl+l) Y. = (i/2)ffl + |)//~ 
C = Y . - ~ + 2 )  

With bifurcation from the point y = y. a limiting cycle is created; its size increases with an increase in the 

amplitude h; when h ~ oo, the cycle merges with the separatrix loop. Applying, just as in [16 ], the averaged values 

(1;) = (y) D ,  h =  Y l D / 2 ,  (y) = - ~  YsdT ,  
0 

we find an expression for (F) at large amplitudes: 
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1.3.5- ... - ( 2 p -  l) h,  p =  m2/4.  
= 1 2 . 3 . . . . . t ,  

We note also that the bifurcation of the solution (15)-(17) is observed for relaxing radial and transversal 
heat fluxes as well as in the relaxed (stationary) state. 

Results. Damping oscillations of T and q may occur not only in time (the case of plane symmetry), but 
also over a logarithmic radial coordinate (cylindrical and spherical symmetries). In the case of volumetric energy 
release, oscillations may occur only in the plane case, and with a heat sink, only for fields with radial symmetry. 
These facts explain the considerable effect of thermal relaxation obse, red in the experiments with high-temperature 

superconductors. It is shown that for relaxing thermal fields with an inhomogeneous volumetric energy source there 
exists a bifurcation point (a complex state of saddle-node equilibrium). The critical values for the source parameter 
and the medium nonlinearity parameters are calculated in the region of which bifurcation changes in the 

thermophysical system occur. A class of thermal fields in a plane circular region ks indicated for which there exist 
bifurcation values (21) of the parameter of the nonlinear volumetric energy sink <the generation of a ,limit cycle 
from the separatrix loop). 

N O T A T I O N  

T, temperature; q, vector of specific heat flux; t, time; x, Cartesian (radial) c~ordinate; ~l, ~ c i e n t  of 
thermal conductivity; c, specific volumetric heat capacity; qv, power of irrternal heat ~onrces; 7, brat  fl~x relaxation 

time;/5, medium nonlinearity parameter; Os, Ostrogradskii criterion. Indices: :b, sc,~les of ~emdimetasionatized 
quantities; the dot over the sign of the function denotes ordinary differentiation; independent v~riables i~n the role 
of subscripts denote partial differentiation; *, denotes the bifurcation value of the ,p~v~an~ter. 
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